
Transport coefficients of the relativistic degenerate electron gas in a strong magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1977 J. Phys. A: Math. Gen. 10 1525

(http://iopscience.iop.org/0305-4470/10/9/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/10/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math, Gen., Vol. 10, No. 9. 1977. Printed in Great Britain. @ 1977 
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Received 4 April 1977 

Abstract. The transport coefficients for a relativistic degenerate electron plasma embedded 
in a strong magnetic field are calculated in a relaxation time approximation for the case of a 
collision dominated plasma. The heat conduction gives rise to two thermal conduction 
coefficients (parallel and transverse) plus a diffusion term. The two usual viscosity coeffi- 
cients (bulk and shear) split into five viscosity coefficients (bulk, parallel, transverse, cross 
shear, plus bulk/shear). Transverse and longitudinal electric conductivities are also calcu- 
lated. The model depends on a relaxation time which has to be evaluated according to the 
specific physical situation under consideration. The techniques used throughout this paper 
are those of the covariant Wigner distributions studied elsewhere. 

1. Introduction 

In many astrophysical systems relativistic quantum plasmas should be dealt with: white 
dwarfs, magnetosphere of pulsars, etc. Moreover strong (or moderately strong) magne- 
tic fields also have to be considered in such systems: lo6 to lo8 G in the case of magnetic 
white dwarfs; 1 O I 2  G in the case of pulsars. Therefore a general study of relativistic 
quantum plasmas is an absolute necessity-specially when a magnetic field is present- 
in order to have a clear understanding of a large class of astrophysical phenomena. 

In another paper (Dominguez Tenreiro and Hakim 1977a, to be referred to as I), 
some methods of relativistic quantum kinetic theory have been derived and discussed, 
and we first recall briefly a few results necessary for what follows in this paper. 

The basic ingredient is the quantum distribution function defined by 

where $ is a spin-; quantum field describing the electron-positron field. In equation 
(1.1) the angular brackets represent a quantum statistical average: 

( $ ( x  +;R) 0 $ ( x  -;R)) =Tr(p$(x +;R) 0 $ ( x  -$I?)) (1.2) 
where p is the density operator describing the statistical state of the system. Note that F 
is a 4 x 4 matrix. In fact in many situations the effect of spin can be neglected (e.g. when 
WB << kT) and instead of the unusual quantum distribution (1.1) (or, equivalently, of the 
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1526 R Dominguez Tenreiro and R Hakim 

relativistic Wigner function (see I)) one can use a simpler, scalar distribution function, 
defined by (I) 

(1.3) 
1 

f ( x ,  p )  = 7 d4R exp(-ipR)($(x + i R ) .  J / ( x  -$R)). 
(2.rr) 

This last distribution will be used in all that follows. One can show (I) that it possesses 
the usual properties of a one-particle relativistic distribution function and, in particular, 
the four-current of the system and its energy-momentum tensor are given by the usual 
relations (I) 

As a useful example, necessary in the following, we obtained the quantum distribution 
function for an electron fluid embedded in a strong magnetic field as (I)?. 

In equation (1.6) the E, are directly related to the eigen-energies of an electron in an 
external magnetic field h : 

n = 0 ,  1 , 2 , .  , 

(H,=  4.414 x l O I 3  G), where p11 is the momentum parallel to the magnetic field. In 
equation (1.6) L, is a Laguerre polynomial of order n, E F  is the Fermi energy of the 
system and w 2  is given by 

w 2  = (p:+p:) / ( le lh /m)  (1.8) 
(le1 being the charge of the electron) and is essentially connected with the transverse 
momentum of an electron in the magnetic field. In the derivation of equation (1.6) not 
only have we neglected interactions between the electrons but also the contributions of 
the positrons. As to this last approximation it is not difficult to add their contribution 
and furthermore in practical situations it is negligible (I). One more remark should be 
made: feq(p) is a Lorentz invariant written in the reference frame where the system is at 
rest and where the external electromagnetic field is purely magnetic. 

These definitions would be useless if we could not give, derive or assume a 
(covariant) kinetic equation for f ( x ,  p ) .  Such a kinetic equation first depends on the 
whole body of approximations or assumptions effected and next on the future use of 

In this paper we want to derive the transport coefficients of the relativistic degener- 
ate electron gas embedded in a strong magnetic field for at least two reasons (briefly 
discussed in I): (i) it yields the most general form of the hydrodynamical equations of a 
relativistic charged fluid in the presence of a magnetic field; and (ii) it provides all those 
-F There is a misprint in I .  The correct expression reads as in equation (1.6) 

f(x, P I .  



Relativistic electron gas in strong magnetic field 1527 

dissipative processes so important in relativistic astrophysics (they affect e.g. helium 
production in the early universe, the damping of magnetic fields, the stability of dense 
stars, etc). To this somewhat modest end we use the covariant generalisation of the BGK 

equation (Bhatnagar et a1 1954) discussed in I: 

(T being the relaxation time (I); U ,  being the average four-velocity of the system; and 
F@A being the external magnetic field). This equation can be solved with the help of the 
Chapman-Enskog expansion which, at order one, is given by 

(1.10) 

where the dependence of f e q  on x occurs only through the macroscopic quantities u p ,  p, 

Although rough, the approximate calculations (relaxation time approximation, 
neglect of spin, etc) presented in this paper are sufficient when dealing with points (i) 
and (ii) above (I). In what follows we find that the determination of some transport 
coefficients is somewhat ambiguous as is the case in the non-relativistic and non- 
quantum limits when a magnetic field is present (Clemmow and Dougherty 1969). 
Nevertheless the relevant quantities, when dealing with dissipative effects, are unam- 
biguous (up to the higher-order terms in the Chapman-Enskog expansion used in these 
papers): they are essentially the off-equilibrium parts of the four-current and of the 
energy-momentum tensor. 

The calculated transport coefficients generally split into transverse and longitudinal 
parts: this is the case for heat or electrical conductivities or shear viscosities. However, 
in the shear part (i.e. the traceless part) of the off-equilibrium part of the energy- 
momentum tensor cross effects show up. 

In this article use is made of the notation in I and the organisation of the paper is as 
follows. In 8 2 the calculation of heat conduction coefficients is effected while in 8 3 
viscous effects are studied. In 84 expressions for the electrical conductivities are given 
and discussed. Section 5 is devoted to comments on the results obtained. 

EF (1). 

1.1.  Notation 

Unless explicitly stated x ,  p ,  R,  etc are four-vectors, the metric used having the signature 
+---. In what follows we use the notation 

~ @ ’ = g @ ” ~ u ~ u v ;  ~ @ ” = h ~ ’ + n @ n ” ,  

where gw” is the usual Minkowski space-time metric tensor and where 1 2 ,  has the 
following properties (I): 

n’n, = -1;  nwu, = 0;  U’LU,  = 1 

F,’” = hewYPBnauB. 

2. Heat conduction 

Let us first recall that in the description of Landau and Lifschitz (1975) of the relativistic 
fluid the four-current contains two parts, one representing the streaming of particles, 
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the other being the heatfEux, i.e. 

J " ( x ) =  nequ'I -q'I 

with 

nequ 'I = Jrq 

u,q'I = 0. 

In this type of description there are no longer any heat conduction terms in the 
energy-momentum tensor and we show in 0 3 that this is actually the case. Since, by 
definition 

J @ ( X )  = Jrq(X)+ T J G ) ( X ) +  O(T2), (2.4) 

it follows that 

q'I = --7J;;)+o(T2). 

Now multiplying equation (1.6) by palm,  integrating over p and using equation (4.19) 
of I, one gets finally? 

where we have set 

Because of the fact that feq(x, p )  depends on the only €our-vectors u'I and n@, which are 
orthogonal to F'I" and because of the antisymmetry of this tensor, it is easy to realise 
that the third term in equation (2.6) does not give any contribution to the off- 
equilibrium part of the current, say to J ~ ) ( x ) .  One can also check that the matching 
condition (4.15) of I is satisfied as is obvious in the forms given below for J;) (X) .  Both 
the presence of 7 and of gradients in equation (2.6) indicate its dissipative nature as it 
should be. However, only the first term can contain gradients of temperature and hence 
it will be used directly in the calculation of heat conduction coefficients. 

Let us now calculate these coefficients. Since the tensors E"* and Sap* are 
completely symmetrical their general forms are$ 

(2.10) 

(2.1 1) 

EaA = Elu"uA - E 2 v a h  + E3nanA + E4(uanA + u*noL) 

sa@* = sIuauPu* + 3 ~ 2 ~ ' ~ 7 r ' * ) -  3 ~ 3 u ( ~ n ' n * ) +  3sin'"vPA)+ 3 ~ g n ( ~ u ~ u * ) + ~ ~ n ~ n ~ n * ,  

f From now on we drop the terms O(r2)  which are implicitly involved in our subsequent equations. 
$The  factor 3 is not a numerical factor but only indicates the number of terms present in the permutation 
(with repetitions) of the indices included between parentheses. In the following we also use the convention 
that symmetrization over indices (via parentheses) only applies to free indices. For instance, A(aus)B, = 
A ausBo + A 6oaBw. 
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since feq(x, p )  depends on the only macroscopic four-vectors U" and no. In equations 
(2.10) and (2.1 1) the coefficients E; (i = 1, . . . , 4 )  and si ( i  = 1, . . . , 6 )  depend only on 
the macroscopic quantities neq, p, h. The symmetry of f eq(x ,  p )  under reflexions along 
the magnetic field (see equation (3.28) of I) leads to 

E4 = S4 = S5 = s6 = 0. (2.12) 

Note also the relation 
uASaPA = E"@ 

which yields 

si = El,  ~2 = -E2, ~3 = -E3. 

Moreover one has 

E1 = E'"u,u~ = I d4p uap"feq(x, p ) ~  neqm 

E3 = -EaPnanP = - 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Finally the heat flux four-vector q" can be rewritten as? 

7 
TJ;;, = --{U"[& + (E2-E3)u~n'A] + n"[(E3 - E*)( + (E3 - E2)u + (E3 -&)nAliA] 

m 

-d"E2+uaE1+(E3-E~)n'"} (2.18) 

(with nra = n p  dona), where use has been made of the conservation of charge 

dw(nequ'I)= 0 (2.19) 

or 

rieq + neq8 = 0 (with 8 = a,u"). (2.20) 

Also it is easy to check that the orthogonality relation (2.3) is satisfied. It follows that 
since q a  is, in the proper space, orthogonal to U" it can be decomposed into two parts, 
one orthogonal to n" and the other parallel to it, in the form 

q" =qiB:+44 

q& = -nanpqP 

with 

(2.21) 

(2.22) 

q4 = r ; q p .  

The longitudinal heat flux q& is given by 

4: = - - n a [E: + (E3 - E2)u + (E3 - E2)n (2.23) 
7 

- n e q m n A k ]  -TJTI)~~ m 

t Remember that the prime designates the derivative parallel to n"(A '=na  &A) while the dot designates 
the derivative parallel to u " ( A  = u'I a,A); moreover U = d u n u .  



1530 R Dominguez Tenreiro a n d  R Hakim 

while the rranstrerse hear flux q ;  is 

To these heat fluxes correspond two heat conduction coefficients, respectively All and 
Ai, defined through 

(2.25) 

(2.26) 

These Q" are in fact the rrue heat fluxes which include the so called Eckart inertial term 
A@-'L& (Eckart 1940) (or rather their respective projections) and, as we see below, 
q" # Q". The definitions (2.25) and (2.26) do not change the values of the heat 
condition coefficients: they only change the definitions of heat fluxes by including into 
them the inertia and momentum of heat. We have 

p 2 ~ , 1  = numerical coefficient of (-n"n a,@) 

p 2 ~ L  =numerical coefficient of (7"" a$). 

In order to obtain these coefficients we first note that 

(2.27) 

(2.28) 

(2.29) 

(i = 1, 2, 3). We now express a,n,, as a function of a,p with the help of the 
energy-momentum conservation relation at order zero in T :  it turns out that the relation 
between these two quantities has the form 

ry",p + r ~ ' a a n , , + r ~ Y a , l h 1 2 + K Y  = o  
with 

(2.30) 

(2.31) 

(2.32) 

K" =(p+P,)(li"+Ou")+(Pl,-P,)(vn"+n'"). (2.33) 

It follows that 

Janeq= - ( r ; l ) av ryapp  -(r;1),,r~paapih12-(r;1)pvKa (2.34) 

and one easily finds? 

(2.35) 

t (r;')"B necessarily has the form ~ u ~ u ~ + b ~ " ~ + c n ~ ' n ~ .  The three unknown coefficients (a,  b, c )  are 
obtained from the conditions ~ ' ( r ~ 1 ) c 8  = gg. 
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Substituting equation (2.35) into equation (2.29) and the result into equations (2.25) 
and (2.26), we find 

(2.36) 

(2.37) 

Using equations (2.31) and (2.35), the definition (2.33) of KP, equations (2.25) and 
(2.26), equations (2.27) and (2.28), the heat conduction coefficients are found to be 

(2.38) 

(2.39) 

We now have to come back to the physical interpretation of some definitions given 
above. First we want to stress that the only physically meaningful quantity is the 
off-equilibrium part J c )  (or equivalently Jc)ll and./;),) of the four-current J". The fact 
that it is called the heat flux or that only Q" is called the 'true' heat flux is somewhat 
arbitrary and refers only to the presence of spatial gradients of the temperature in its 
formal expression. However, if we still insist that heat fluxes are defined through 
equations (2.25) and ( 2 . 2 6 t a n d  these definitions are quite natural since they put 
forward the existence of mome'ntum and inertia of heat-then it remains to interpret 
the other terms, i.e. J G ) - Q r .  In fact they should probably be looked at as diffusion 
terms. To explain this point more precisely and in order to obtain a deeper insight into 
their physical interpretation, instead of eliminating the gradients of neq with the help of 
the zeroth-order energy-momentum conservation relation, we could also eliminate the 
gradients of Ih 1 2 .  Doing so, we should find 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

The first two equations represent the new thermal conductivity coefficients, while Dll 
and D, are respectively the parallel and transverse diffusion coefficients. The 
ambiguity in the definition of heat conduction coefficients is by no means new and also 
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occurs in classical situations when a magnetic field is present (see e.g. Clemmow and 
Dougherty 1969). In the classical case one usually finds a third heat conduction 
coefficient. Here this is not the case because of the aforementioned symmetry of feq(p) 
under reflexions along the magnetic field (see 0 5 ) .  

To summarise this brief discussion J G )  must be considered as the heat flux four- 
vector although its detailed decomposition leaves place to some arbitrariness. 

Let us also add that the heat conduction coefficients (2.38) and (2.39) tend to the 
same value A 

lim A,, = lim A, = A ,  

when the magnetic field is switched off. This common value is the one already given by 
Anderson and Witting (1974) in the absence of magnetic field. 

h-0 h-0 

3. Viscous stress 

We first notice that the viscous stress tensor has exactly the same form either in Eckart's 
relativistic hydrodynamics or in that of Landau and Lifschitz so that there is no problem 
of passage from one form to the other. Moreover we have already remarked in I that 
the matching conditions: (i) are imposed (equations (4.8)-(4.10) of I) by the covariant 
BGK equations; and (ii) yield the same results as those of Landau and Lifschitz (equation 
(4.12) of I) (see below). 

Let us now calculate the first-order correction F{, 
T"' = E:+ T T T ~  + 0 ( T 2 )  (3.1) 

to the energy-momentum tensor. To this end we multiply equation (1.10) by p " p P / m  
and integrate over the p variables. We then get 

F8 = -(asa'" + d U ~ A Q " ' " ' )  (3.2) 
where 

(3.3) 

(3.4) 

and as in 0 2 the term involving FF" does not contribute to F8 and for the same reasons. 
The symmetric tensors Sa'" and QaBUA can be decomposed as? 

sa'" = S ~ U ~ U ' U ~  + 3 ~ ~ u ( " r r * ~ ) - 3 ~ ~ u ' ~ n ' n ~ '  (3.5) 
and 
QaPuA = Q 1 ~ a ~ ' ~ u ~ A  + 6 Q 2 ~ r ( a P ~ u ~ * ) + 3 Q 3 ~ ' " ' ~ u A )  

(3.6) + Q4nun ' n  "n A - 6Q5 rr(aBn "n ' ) - 6Q6u'Ou ' n  "n ' ). 
In equations (3.5) and (3.6) the coefficients of terms involving an odd number of n" 
vanish because of the invariance of feq(p) under reflexions along the magnetic field. The 

t See second footnote to p 1528. 
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remaining coefficients Si, as well as the Qi, are easily expressed as integrals. Also we 

The matching conditions read 

S I  + (sl - s2)e + (s2 - s3)uAntA = o 
Si + (S3 - S2)v  + (SI - S2)nAiA = 0. 

(3.10) 

(3.11) 

Using equations (3.8), (3.10) and (3.11),  equation (3.9) can be rewritten as 
--p- (1)  - 7~"' [ S 2  + ( S 2  + Q3)e + (a3 - Qs)n"uiI 

- n "n ' [S3 + (S3 + Q5)0 + (a4 + 3Qs)n 'U i] 
+7r("[nP'nA d,u,(03-Q5)+a,uP'(S2+Q3)]-n("n" duu"(S3+Q5) 

+ u'"n ' ) n A i A  - ~ 3 )  + n'"r" ' (~2 - ~ 3 ) .  (3.12) 

From this last expression for y6 it is easy to see that 

u'F;=o (3.13) 

i.e., the Landau and Lifschitz matching conditions are also satisfied. Let us now split 
T;;"1 into a traceless part IJ"' and a part proportional to A"'(u") since F; is in the 
proper space of u p  as shown by the form of the above equation (3.13): 

F$= t+!~"'+fh"'(~~)X *", = 0.  
(3.14) 
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As usual the traceless part of T;;", will provide the shear viscosity coefficients while the 
trace part will furnish the bulk viscosity coefficient. However, in order to obtain them it 
is preferable to use the projections of on the t w o t  orthogonal projectors rue, 
-nune instead of using its expression given by equation (3.15): 

= raArep~Ap  + n "n *(nAn - r(% e)np+Ap + U "U' (uAuP*Ap) 

+rTT(aAuP)uP+Ap-n'an A U P )  U P * A p  (3.17) 

where, of courset, the last three terms of this equation vanish identically. We find 

- y P -  (1)- r"@[S2+(S2+ Qs)8 +(Q3-Q5)nAu;+3T?1)~] 

- n 

+ ( S 2 +  Q 3 ) ~ p f i ~ e p ( a p ~ ,  +a,u,)+(s,+ Qs)nnnen@nP(a,u, +a&,) 
- ( S 3  + Qs)r(""n ' ) n p  (apu, + a,u,) + (S3  - S 2 ) r % 1  ' ) n p  (apu, - a,u,) 

-& 1 4 (u')T?IN. (3.18) 

In this equation the last term is the bulk viscosity stress while the term before represents 
the effect of vorticity of the stream lines. This term also exists in the non-relativistic case 
(e.g. Kaufman 1960). The five remaining terms represent shear viscosity. However, 
before giving the expressions for the viscosity coefficients we have to evaluate the Si 
occurring in equation (3.18). We have 

[ S 3  + ( S 3  + Q5)8 + (0, + 3 Qs)nAu; + ~ T Z I , ~ ]  

(3.19) 

where use has been made of equation (2.20). 0 is now calculated from the expression 
(3.36) given in I for Sl and reads 

as 1 asl asl -1 as1 
ap aneq ap  alh I 6 = ( 2)- 8 ( neq - - (S1 - S 2 ) )  - (-) ( (S2 - S3)uAn 'A + Ih 2 1 '  7). (3.20) 

As to lh2/' it can be calculated by using Maxwell's equation a,F@"* = 0, a consequence of 
which is (see e.g. Lichnerowicz 1971) 

~lh21'+elh12+nAu;lh12= 0. (3.21) 

Finally it turns out that Si can be written as 

Si = AiB +BinAu; (i = 2, 3) 
with 

(3.22) 

(3.23) 

(3.24) 

t There is no need for the projector uQuS because of equation (3.13). 



Relativistic electron gas in strong magnetic field 1535 

(i = 2,3) .  Now introducing the shear tensor uM,, 

up, = (d,u,+d,u,)-% A w Y ( u p ) ,  (3.25) 

the traceless part $”’ of the viscous stress tensor F: can be rewritten (without the 
vorticity term) as 

-4“’ = ( S 2  + Q3)(7rR’17rTTPP -&a’7r”p)u’Ip - (S3 + Q5)(7r(a”nP)nP)u’Ip 

+ N  2 2 3 n  [”c’ n ’ ++7ra’)(fnwnP +f7rwp)luwp + ( M ~ - ~ N ~ ) ( T ” ’  + 2 n a n P ) e  
(3.26) 

where 

M -  2 - -3[4(S2 1. + 0 3 ) +  (S3 + a,)+ 2-42 +A31 + 2(S2+ Q 3 ) + A 2  

N2= -+(2S2 +403-2S3-Qs + 0 4 +  2B2+B3)+ (S2 + Q3)+B2+ ( Q 3 -  ( 2 5 ) .  

(3.27) 

(3.28) 

(Note also that for h + 0, N2 + S2 + Q3.) Let us now identify the viscosity coefficients. In 
fact there is no unique way to define these coefficients as is obvious from the literature 
on the subject (see, e.g., Kaufman 1960, Braginskii 1965, Coope and Snider 1970, De 
Groot and Mazur 1962, Clemmow and Dougherty 1969) and the grouping of the 
components of d(,u,) (or U@,) which serves to define them is largely a matter of taste or 
adaptation to experimental situations or symmetries of the problem under considera- 
tion. Nevertheless it should be noticed that the physically meaningful quantity is the 
viscous stress tensor and not necessarily its decomposition. In equation (3.26) we have 
used a covariant generalisation of Braginskii’s (1965) decomposition: 

$bap = -770 wy - 771 w:p - 772 w;p - 773 wy - 774 wy - qW@ 

where the 77i and fj are the viscosity coefficients and the WY’ are given by 

WO“’ = ;[ ( n  “n ’ + $A“’ ( U  ’ ) ) (n  ’In + +Aep (U A ))]uWp 

~ 7 ’  = ( , j - ” w ~ ’ ~ - t ~ ~ P n w n ~ ) g , ,  

W’= -(7rP’n’nP +n’Pnun’I)u’Ip 
w;P = ; (71wEPvP + 7r@~Ewfi 

b P * P  

w:’ = -(nZLIn’IePYP + n ’ n P ~ a y ~ ) n p w p  

Wa* =(nap + 2 n a n B ) e  

where 

= E a w A  uA* - 
def 

These W?’ are orthogonal and traceless. In our case we have 

773 = 774 = 0 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

because of the repeatedly mentioned symmetry of feq along the magnetic field direction 
which forbids the appearance of terms odd in n”. Moreover it is easy to identify (3.30) 
with the third term of (3.26), (3.31) with the first term of (3.26) and (3.33) with its 
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second term. This identification yields 

(3 .38 )  

(3 .39 )  

(3 .40 )  

The last term in equation (3 .26 )  is to be identified with a viscous cross effect between 
shear and dilatation. It also exists in the classical case (see, e.g., De  Groot and Mazur 
1962) but not in Braginskii's decomposition due to the particular problem treated. This 
coefficient, conventionally called 5, is given by 

l ~ i j = M 2 - f N 2 .  (3 .41 )  

Before discussing the bulk term in equation (3 .18 )  let us add a few words about the 
vorticity term occurring in the same equation, say 

(s3 - ~ ~ ) 7 ~ ( ~ ~ n ~ ) n ~ ( a , u , ,  - a,u,). (3 .42 )  

(Recall that S3-S2=PI-Pli.) This term also exists in the classical case (see, e.g., 
Kaufman 1960).  Obviously it occurs because of the rotation of the charged particles 
around the magnetic field axis and it is to be expected that it has the maximum value at 
zero temperature and that it vanishes at high temperature: this is clear from the fact that 
it is proportional to P,-Pil, this quantity tending to zero as T- ,  CO. 

Let us now discuss the bulk effect contained in the last term of equation (3 .18) .  
Using equations (3 .16) ,  (3 .19 )  and (3 .21 )  it is found that Ttl),+ can be written as 

-T~I) ,+= B(2A2 + A3 + 4 & +  a,)+ (S3 + Q 5 ) -  (2S2 +4Q3 - 2S3 - Qs + Q 4 )  

- T ( 2 B 2  1 + B 3 ) )  - - (2S2+4Q3 lh21' - 2S3 - Q5 + Q4+ 2B2 + B 3 ) .  (3 .43 )  
Ih I 21hI2 

The first term of this equation provides the bulk UiscOsitY coefficient 77,: 

1 
q,= 2 A 2 + A 3  +2S2+  ~ S , - Q ~ + ~ Q S - F ( ~ B ~ +  Bg) (3 .44 )  

lhl 

whereas the sxond  is a contribution to the pressure. Once more it should be noticed 
that this decomposition-and thus this definition-is largely arbitrary, the physical 
quantity being simply the dilatation term -$Ttl,, AuB(up) .  Also this reflects the 
arbitrariness of the decomposition of the energy-momentum tensor into a particle part 
and a magnetic field part: this pressure term could as well be included in the energy- 
momentum tensor of the magnetic field. 

4. The conductivity tensor 

Let us now look for the conductivity tensor AWup defined through 

J,",,, = AWu8F$ 
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where F,“B is a weak t external electric field (i.e. one has 

EpmsF:;K.Bt = 0 

FEAFtj > 0 
(4.2) 

which characterise the purely electric nature of FE:) and where JLSp is the response to 
FrA. To this end we start once more with the BGK equation (4.4) of I where Fw” is now 
replaced by F”“ + FrX:. At order one in r, f(l)(x, p )  still has the form (4.14) of I with Fe“ 
also being replaced by F”” + FE:. Multiplying this new expression for f(l)(x, p )  by 
.r(e/m)p’” and integrating over the p variables we obtain 

(4.3) 
er re 

m T J ~ ,  = -;@,EGA +aPuAswBA)--C$G:P 

where the tensors E”*, SIL” and GgP are given by equations (2.7), (2.8) and (2.9) 
respectively. In equation (4.3) the first term is the heat flux (multiplied by e )  while 
strictly speaking the second is the linear response to the external electric field E$. It 
follows that 

The tensor GwaP can be rewritten as 

In equation (4.5) the term involving p”g”@ does not contribute to the conductivity 
tensor which must necessarily be antisymmetrical in those indices (a, p) .  Writing 

(there is no term proportional to n P  because of the symmetry of feq under reflexions 
along the direction of the magnetic field n P )  and 

” P  
d4pfeq(x,p)%= b l ~ ” u P - b ~ ~ ” B + b 3 n w n P  

(U*P 1 (4.7) 

one can easily see that 

bi = a1 = 5 &pfeq(x, P). (4.8) 

Moreover, after due antisymmetrisation, one obtains 
2 

(4.9) AwP = - - [ (b2-  ‘e bl)(u”d’@ - uP7r”“)-(b3- bl)(nBu” - n ” u P ) n w ] .  
2m 

The first term in this expression for the conductivity tensor connects the transverse part 
of the current to the transverse electric field and thus represents the transverse 
conductivity 

(4.10) 
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The remaining term connects the longitudinal part of the current to the longitudinal 
electric field and thus represents the longitudinal conductivity 

Note that 

(4.1 1) 

(4.12) 

(4.13) 

Before discussing the validity of the expressions for ( ~ 1 1  and ul we must add that unlike 
the classical (i.e. non-relativistic and non-quantum) case the conductivity tensor given 
in equation (4.9) contains only two terms related to cq and and not a third one related 
to the Hall effect. This is due to the fact that equations (4.6) and (4.7) do not involve 
terms linear in n” since feq(x, p )  is invariant against the change h -$ -h. In the classical 
case though the Maxwell-Boltzmann distribution obviously possesses the same 
invariance property, the Hall effect and the conductivity are due to an entirely different 
process?. 

Let us now look at the validity of the above calculations. 
We must first emphasise that the above conductivity tensor is only due to collisions 

and that collective effects are at least partly neglected. This is valid only for a dense 
collision-dominated plasma. If collective effects are also to be taken into account, since 
we are concerned only with a linear response, it is sufficient to add to Awn’ a term which 
has exactly the same structure as the non-quantum relativistic expression (Hakim and 
Mangeney 1968, 1971, Hakim and Heyvaerts 1977). In fact at moderately high 
densities the quantum plasma is often completely collision dominated otherwise at 
ultra-high densities its behaviour again becomes collective (see I, 0 5) .  

In the non-relativistic case it is generally argued (Kahn and Frederikse 1969, 
Argyres and Adams 1956, Argyres 1960) that since the nature of the motion of a 
charged particle is different in the case of crossed or parallel electric and magnetic fields, 
it seems necessary to have different treatments for the calculations of the transverse and 
longitudinal conductivities. In our relaxation time model this might signify that it would 
perhaps be necessary to introduce two relaxation times, 711 and rl ,  to be evaluated by 
two different methods. In fact a closer analysis of the usual calculation of the conduc- 
tivities of a quantum plasma embedded in a magnetic field (see the references given at 
the beginning of this paragraph) shows that: (i) (+II can be calculated with the diagonal 
elements of the density matrix only, thereby allowing the use of pseudo-distribution 
functions depending on pi/, one for each Landau level; and (ii) requires a different 
treatment essentially because only of-diagonal elements (diagonal in the quantum 
number p11 and off-diagonal as to n )  of the density matrix are involved in the calculations 
and hence no pseudo-distribution function can be used to relax towards equilibrium. In 
this paper, however, we have used a quantum distribution which is essentially equivalent 
to the complete density matrix so that one might think that our treatment could be valid. 

t In this paper the dependence of our transport coefficients occurs only via the equilibrium distribution. This is 
a typically quantum effect. In the classical (non-quantum) case, it occurs via the Lorentz force term, which is 
linear in the magnetic field. 
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Unfortunately the situation is by no means so simple since f(ll, which approximates f ,  is 
a functional of feq itself. On the other hand fees has been calculated neglecting 
interactions, and therefore is linked to the diagonal part of the density matrix and not to 
its off-diagonal elements. It then follows that our treatment of ul is probably not 
correct although the evaluation of the relaxation time 7 certainly involves the whole 
density matrix. As to uII our treatment is certainly as good as all other treatments based 
on a relaxation time approximation (Canuto and Chiu 1969, 1970). 

This brings us to the third problem, a conceptual one: Is the relaxation towards 
equilibrium actually exponential? Of course this problem exists in all relaxation time 
models and depends on the particular physical situation under study. Anyway it is 
generally extremely difficult to solve. 

Let us finally add one more remark. If the applied electric field is not weak? then it is 
necessary to use an equilibrium quantum distribution taking account of both F”” and 
F,”,”, (Dominguez Tenreiro and Hakim 1977b). However, in such a case the response of 
the system ceases to be linear. 

5. Discussion and conclusion 

Let us now summarise the results obtained in this paper (the approximations used have 
been discussed in I). 

(1) We have obtained forms for relativistic hydrodynamical equations in the 
presence of a magnetic field and, as a consequence, the general expressions for the 
various transport coefficients. In the definitions of the latter we have encountered 
ambiguities inherent to the presence of magnetic fields, ambiguities which also exist in 
the non-quantum and non-relativistic case. Here we must point out that the expres- 
sions obtained for the transport coefficients are still valid if we replace feq(p) by any 
pseudo-equilibrium function towards which the gas relaxes in a proper time i (much 
smaller than T,  the relaxation time towards feq(p): i then should replace T everywhere) 
provided the only four-vectors on which it depends are U” and h‘”, p being replaced by a 
parameter characterising for instance the energy content of the gas. Finally we have 
given expressions. for the dc conductivities (longitudinal and transverse) whose 
validities depend strongly on the validities: (i) of the relaxation time model itself; and 
(ii) of the evaluation of the relaxation time. 

(2) The limit of a vanishing magnetic field can be obtained easily once we have 
noticed that f&) tends to an isotropic function 

the isotropic function being the usual relativistic equilibrium quantum distribution (up 
to inessential S terms, which accounts for its four dimensional normalization). For 
instance, one then has 

lim Pi1 = lim P, = P 
h+O h-0 

(P  being the pressure of the ordinary relativistic Fermi gas). Let us show how these 
remarks apply to the case of the thermal conductivity coefficients. A glance at 

t See footnote to page 1537. 
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equations (2.38) and (2.39) shows that in order to obtain the same limit for Ail and A I  
when h tends to zero, it is necessary to have 

lim E2 = kz E3. 
h - 0  

In fact we have 

lim E 2 = - -  -(p:+p:)lim feq(p) 
h - 0  2 I d4p Po h - 0  

in a Lorentz frame where U” = (1 ,0 ,0 ,0)  and n” = (0, 0, 0, 1). The other limits can be 
obtained in a similar manner although in a slightly more complicated way. 

(3) Let us now explain how the conditions treated in our work differ from those 
considered by Anderson (1977) in his calculations of the transport coefficients of the 
relativistic degenerate plasma. 

Firstly we treat the case of a strong magnetic field (i.e. fIB7 >> 1,  n* - 1) whereas 
Anderson deals with the moderately strong field case (QB7 >> 1, n* >> 1) (Canuto and 
Ventura 1977 and references quoted therein). 

Consequently we used a magnetic-field-dependent quantum distribution while the 
one used by Anderson is the usual relativistic Fermi-Dirac distribution. A second 
reason, which is partially a consequence of the latter, is the following. The magnetic 
field dependence (for instance, in direction) of the quantities relevant to the calculation 
of the transport coefficient (i.e. JC,, TG)  occurs-in Anderson’s approach--only 
through the term 

while in our treatment it occurs only through the equilibrium distribution function. 
Consequently our transport coefficients are merely of quantum origin while Ander- 
son’s have their classical counterparts (when h # 0). At this point it remains to explain 
the reason why we do not obtain Anderson’s terms in addition to our own. This is due 
essentially to the constraint (3.10) of I which prevents the occurrence of terms linear in 
F”‘ in the off-equilibrium parts of the four-current and of the energy-momentum 
tensor. The constraint (3.10) of I-necessary in our case-does not exist in Anderson’s 
article because of the total independence of U’ (occurring in its equilibrium distribu- 
tion) and F”” which contains a small electric part. Also note that the approaches of 
these two papers are quite different in that we have used the Chapman-Enskog 
expansion rather than the variational treatment of Anderson and the BGK collision 
term rather than the Boltzmann collision term. 
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